Samstag, 4. Oktober 2008

Lichtgeschwindigkeit und Relativitätstheorie - Kann man das überhaupt verstehen?

Der Text sowie die von mir angefertigten Grafiken unterliegen dem Copyright und dürfen nicht ohne Genehmigung verwendet werden
 
Lichtgeschwindigkeit und Relativitätstheorie - Kann man das überhaupt verstehen? 



Wohl jeder weiss intuitiv worum es geht wenn von der Lichtgeschwindigkeit (abgekürzt durch ein c) gesprochen wird, doch was genau bedeutet diese Einschränkung der Geschwindigkeit bei der Ausbreitung von Licht und Informationen? Mit dieser Frage stehen wir direkt vor der Relativitätstheorie Albert Einsteins, die zu Recht als harte Nuss gilt, sowohl für das mathematische Verständnis als auch für den "gesunden Menschenverstand". Ihr werdet hier keine einzige Formel finden denn ich will lediglich die Konsequenzen verständlich machen die Lichtgeschwindigkeit und Relativität bedingen. Was landläufig als Relativitätstheorie bezeichnet wird sind eigentlich zwei Theorien, die Spezielle Relativitäts Theorie (SRT) und die Allgemeine (ART). Die SRT vollendete Einstein bereits 1905 und erst 1916 veröffentlichte er die ART, welche auch die Gravitation mit einbezieht. 

Zu Beginn daher eine Anekdote: Der Astronomen Arthur Eddington, der die noch neue Relativitätstheorie 1919 zum ersten Mal durch Beobachtungen untermauerte, wurde beglückwünscht: "Sie gehören wohl zu den drei Menschen auf der Welt, die die Relativitätstheorie verstehen!" - Dieser antwortete nicht gleich und der Fragende schob nach: "Seien sie doch nicht so bescheiden Eddington!" - worauf Eddington antwortete: "Ganz im Gegenteil, ich überlege wer der Dritte sein könnte."

Im vergangenen Jahrhundert beschäftigten sich eine Unzahl an Wissenschaftler mit dieser Theorie die im Laufe der Jahrzehnte immer aufs Neue Bestätigung fand aber, und das wusst Einstein selber, keine abschliessende, allumfassende Theorie ist, sondern wiederum einen Grenzfall einer noch grösseren, einheitlichen Theorie ist - an der fieberhaft geforscht wird aber deren genaue Formulierung noch lange dauern kann... Beginnen wir mit einigen grundlegenden Feststellungen die für das Verständnis wichtig sind.
 
Was ist Relativität? 

Relativ kann vieles sein, Bewegung, Geschwindigkeit und auch die Ortsangabe. Dass dem so ist können wir uns an einfachen Beispielen veranschaulichen. Mein aufmerksamer Leser sitzt augenscheinlich vor seinem PC und liest diesen Artikel, wie schnell bewegen sie sich? ..... Gar nicht? Das stimmt, aber nur wenn als Bezugspunkt der Schreibtisch oder das Zimmer in dem er steht gewählt wird, in Wirklichkeit rasen wir in diesem Moment mit 12.000 km/Minute durch das Weltall, zunächst einmal durch die Erddrehung um sich selbst, die Bewegung der Erde um die Sonne und die Sonne selbst bewegt sich um das Zentrum unserer Heimatgalaxie, der Milchstrasse. Gut das war natürlich eine Fangfrage, schauen wir uns ein anderes Beispiel an. Die Angabe eines Ortes bedarf keiner Illustration, wählen wir als Bezugspunkt uns selber wissen wir sehr wohl, dass es einen Unterschied macht ob wir einige Kilometer ausserhalb einer Stadt stehen oder uns eben mitten in ihr befinden, in Bezug auf uns führt das zu den unterschiedlichen Ortsangaben: "Stadt dort" und "Stadt hier" - im Bezug auf die umgebende Landschaft bleibt die Stadt natürlich an ein und dem selben Fleck, wie irreführend aber auch das ist, sehen wir ein wenn wir an unser Schreibtischbeispiel denken...

Etwas handfester: Ein Zug fährt mit exakt 200km/h. Im Zug befindet sich eine Person die mit normaler Gehgeschwindigkeit in Fahrtrichtung durch den Zug läuft, wie schnell ist diese Person? Auch hier stellt sich wieder die Frage nach dem Bezugspunkt. Für einen Aussenstehenden Beobachter der neben den Gleisen steht bewegt sich der Mensch mit der addierten Geschwindigkeit von Zug und ihm selbst, also 200 km/h + 5 km/h = 205 km/h. Wechseln wir zur Perspektive der Person im Zug und wählen als Bezugspunkt den Zug so bewegen wir uns mit gemächlichen 5 km/h durch den Zug, eigentlich logisch, aber auch als Zuginsasse bewegen wir uns mit 205 km/h in Bezug auf die Landschaft die uns umgibt.

r1 

Doch stimmt diese Aussage in jedem Fall? Darauf kommen wir später noch einmal zurück. 

Es gibt noch einen weiteren Fallstrick den wir verstehen müssen, der aber unserer Alltagserfahrung zuwider läuft. Wir fahren konstant mit 200 km/h im Zug und sehen unser Sichtfeld füllend einen anderen Zug an uns vorbeisausen - Wissen wir wirklich wer sich bewegt? Ja wir wissen es, aber nur weil wir bemerkt haben wie unser Zug aus dem Bahnhof hinaus beschleunigt hat, fährt er nun aber konstant und gleichförmig über die Gleise ist es uns nicht möglich festzustellen ob wir uns bewegen oder der vorbeiziehende Zug! Physikalisch gibt es keinen Unterschied zwischen einer gleichförmigen Bewegung und Ruhe, man nennt solche Situationen Inertialsysteme - Beschleunigung ist erfahrbar, die gleichförmige Bewegung nicht. 

Die Lichtgeschwindigkeit

Dreh- und Angelpunkt der Überlegungen zur Relativitätstheorie ist die Lichtgeschwindigkeit (Abk. c), bzw. eine bestimmte Eigenschaft von ihr. Gehen wir noch mal zurück zu unserem Beispielzug, er steht im Bahnhof und schaltet die Scheinwerfer ein, das Licht begibt sich mit Lichtgeschwindigkeit auf die Reise - mit ca. 300.000 km/s (exakt sind es 299.792,458 km/s aber ich runde der Übersichtlichkeit halber im Folgenden ganz frech auf). Soweit bereitet uns das keine Probleme. Nun fährt der Zug los und beschleunigt auf ca. 200 km/h. Nun schaltet der Zug wieder die Scheinwerfer an, wie schnell bewegt sich nun das Licht in Fahrtrichtung vom Zug weg? Im Beispiel unseres Zuginsassen war die Sache klar, man addiere die Geschwindigkeit des Zuges mit der des sich in Fahrrichtung bewegenden Menschen... Sind es also 300.000 km/s + 200 km/h?...

r2 

Nein! Das Licht verlässt den Scheinwerfer mit Lichtgeschwindigkeit und keinen Deut schneller, denn die Geschwindigkeit des Lichts ist in jedem Fall immer konstant! Dies ist eine fundamentale Tatsache die ihn vielen Experimenten immer wieder bestätigt wurde und die Grundlage der Relativitätstheorie ist. Man hört allenthalben von "Überlichtgeschwindig- keit" und das nicht nur in der Science-Fiction. Diese Geschwindigkeiten beruhen aber meist auf geometrischen Überlegungen (Winkelschnittpunkte) und haben nichts mit physikalischen Geschwindigkeiten zu tun, andere Theorien basieren nicht auf tatsächlicher Überschreitung der Lichtgeschwindigkeit sondern auf der Verzerrung des Raumes in dem eine Strecke zurückgelegt wird, aber dazu mehr. Einstweilen müssen wir die Tatsache akzeptieren, dass sich Licht konstant mit Lichtgeschwindigkeit bewegt. Diese Tatsache bringt einige Konsequenzen mit sich, zunächst mal eine noch einfach zu verstehende Sache: Blicken wir an den Himmel sehen wir Licht, das vor langer Zeit ausgesendet wurde, das können lediglich 8 Minuten sein, vor denen das Licht von der Oberfläche unserer Sonne abgestrahlt wurde, das können etwa 4 Jahre sein wenn uns das Licht unseres nächsten Nachbarsterns Alpha Centauri trifft, aber ebenso gut über 22.000 Jahre wenn wir den Kugelsternhaufen M13 betrachten, 2,5 Millionen Jahre wenn wir die Andromedagalaxie M31 beobachten oder sogar etliche Milliarden Jahre bei den weit entfernten und damit sehr alten Quasaren. 

Die Konstanz der Lichtgeschwindigkeit war keineswegs schon immer klar, die griechischen Naturphilosphen waren sich nicht mal einig ob Licht überhaupt eine Geschwindigkeit hat oder ob es einfach "da ist", eine Laufzeit wie bei Schall war mit unseren beschränkten Sinnen nie erfassbar (Blitz und Donner treten nur sehr nahe gleichzeitig auf, Schall bewegt sich eben um Potenzen langsamer als Licht). Bis ins 20. Jahrhundert hinein sahen viele Licht als vergleichbar mit Schall an, das sich durch ein unbekanntes Medium fortpflanzt, dass damals Äther genannt wurde (der Begriff hat sich lustigerweise gehalten auch wenn seine Nichtexistenz bewiesen wurde). So war zu erwarten, dass Licht in Bewegungsrichtung der Erde schneller sein müsste als Licht das die Erde "von hinten" einholt. Diese Theorie wurde durch Experimente von Albert Michelson und Edward Morley in den 80er Jahren widerlegt, Michelson brachte dies als erstem Amerikaner 1907 den Nobelpreis ein...

Gleichzeitigkeit

Ein weiteres einfaches Beispiel, dass die Konsequenzen der limitierten Geschwindigkeit des Lichts und damit auch der Informationsübertragung zeigt ist Folgendes. Wann passiert etwas gleichzeitig? In Verbindung mit dem Begriff der Relativität schlägt auch hier die Lichtgeschwindigkeit zu, denn selbst ob ein vermeintlich eindeutiges Ereignis als gleichzeitig wahrgenommen wird hängt mit der Perspektive zusammen und ist somit relativ.
Stellen wir uns vor wir stehen exakt in der Mitte zwischen zwei sich öffnenden Glasüren, beide öffnen sich gleichzeitig. Genau diesen Eindruck haben wir weil das Licht eine identische Wegstrecke zwischen Tür und Auge zurücklegen muss und somit auch im selben Moment bei uns eintrifft. 

r3 

Das Öffnen der Türen geschieht also aus dieser Perspektive gleichzeitig, doch ändern wir den Blickwinkel ist das plötzlicht nicht mehr der Fall! Positionieren wir uns ausserhalb der beiden Türen braucht das Licht und damit die Information "Tür öffnet sich" länger weil es eine weitere Strecke zurücklegen muss als die uns nähere Tür - Die Konsequenz: Für den Beobachter öffnen sich die Türen nicht mehr gleichzeitig sondern hintereinander!

r4 

Verwirrend? Aber ja, hochgradig ;) Aber auch in unserem Alltag nicht mit unseren Sinnen wahrnehmbar und daher für das alltägliche Leben bedeutungslos, denn so schnell können wir Informationen gar nicht verarbeiten. Wohl aber ist es mess- und nachweisbar und hat sogar handfeste Konsequenzen für Dinge die eben doch unseren Alltag berühren. Das gern zitierte Beispiel der GPS-Navigations Satelliten ist eine solche Situation. Durch die nicht mehr zu vernachlässigende Geschwindigkeit der Satelliten und die Laufzeit der Signale zum Empfänger (mit Lichtgeschwindigkeit) müssen bereits relativistische Effekte mit einberechnet werden, sonst addieren sich die falschen Laufzeiten bereits innerhalb weniger Stunden auf einen Kilometer Abweichung! Dazu kommt noch der Einfluss der Gravitation die Bestandteil der Allgemeinen Relativitätstheorie ist (dazu später mehr), die ebenfalls eine Korrektur der Signale erfordert, diese macht sich sogar noch wesentlich stärker bemerktbar als die Geschwindigkeit.

Bis hierhin haben wir schonmal einige Dinge entgegen unserem "gesunden Menschenverstand" zurechtrücken müssen: Weder Ortsangaben, noch Geschwindigkeiten, nicht mal die Gleichzeitigkeit von Ereignissen ist absolut sondern relativ, nämlich abhängig aus welcher Perspektive beobachtet wird. Darüberhinaus ist nun klar, dass Lichtgeschwindigkeit eine feste Grösse ist die weder beschleunigt noch abgebremst werden kann. Aber wenigstens die Zeit scheint für uns alle eine Konstante zu sein... hoppla - weit gefehlt.

Auch Zeit ist relativ!

Ja sicher, je nach Laune und Beschäfigung kann uns eine Stunde lang oder kurz vorkommen, doch im Folgenden geht es nicht um subjektive, vom inneren Befinden abhängige, Eindrücke sondern um harte, messbare Fakten mit erstaunlichen und teils sehr verwirrenden Konsequenzen.
Um das zu veranschaulichen komme ich nicht um eine kompliziertere Illustration herum. Wir stellen uns eine Zeitmessmaschine (nennen wir es einfach Uhr ;) vor die folgendermassen funktioniert: In einem durchsichtigen Zylinder wird vom Boden des Zylinders ein Lichtstrahl Richtung Zylinderdecke geschickt, dort wird er reflektiert und kehrt zum Ursprungspunkt zurück, die Zeit die der Lichtstrahl dafür braucht stellt die Zeiteinheit dar die gemessen wird. Lieber gleich mal anschauen was wir uns daruner vorzustellen haben...

r5 

Soweit dürfte das keine logischen Probleme bereiten, beobachten wir dieses hypothetische Instrument in einer Art enormen Zeitlupe, sehen wir wie der Lichtstrahl von unten nach oben und dann wieder von oben nach unten wandert, da wird die Lichtgeschwindigkeit kennen und natürlich auch die Strecke die zurückgelegt wird gibt es keine Probleme die Zeit zu stoppen. Durch die enorme Lichtgeschwindigkeit können wir das natürlich nicht wirklich beobachten, nicht in diesem Masstab doch das soll uns nicht interessieren, auf grösseren Längenskalen ist dies "ohne weiteres" messbar. 

Nun bringen wir sprichwörtlich Bewegung ins Spiel, wir beobachten den selben Aufbau, mit dem Unterschied, dass wir den Messaufbau an uns vorüberziehen lassen, ihn also bewegen. Sehen wir das selbe? Wir stellen uns wieder eine extreme Zeitlupe vor in der der Lichtstrahl zuerst nach oben wandert und dann reflektiert wieder nach unten, und so sieht die Bahn des Lichtstrahls für einen Beobachter aus der den Zylinder an sich von rechts nach links vorbeibewegen lässt:

r6 

Huch! Was ist denn jetzt passiert? Wem das nicht auf Anhieb klar ist der sollte folgendes versuchen, malt euch drei Zylinder auf ein Din-A4 Blatt (Querformat), setzt einen Stift am rechten im unteren Lichtaussendepunkt an und zieht das Blatt langsam nach rechts während ihr den Stift nur langsam nach oben fahren lasst (am besten wohl mit zwei Leuten zu bewerkstelligen ;). Dann kommt ebenfalls exakt dieses Bild heraus. Okay und was sagt uns das jetzt? Dem einen oder anderen ist es sicher schon etwas dramatisches aufgefallen: Die Gesamtwegstrecke die zurückgelegt wurde ist länger geworden - da das Licht sich aber nicht schneller als 300.000 km/s bewegen kann und unsere Zeitmessung auf der Zeit zwischen Aussenden und Wiedereintreffen des Lichtstrahls basiert scheint das was sich innerhalb des bewegten Versuchsaufbaus abgespielt hat langsamer abgelaufen zu sein. Stünde ein weiterer unbewegter Messzylinder vor uns und beobachteten wir das Schauspiel in der extremen Zeitlupe wäre der Lichtstrahl im nicht bewegten Zylinder vor dem in Bewegung wieder im Ursprung angekommen und hätte uns das Vergehen von einer Zeiteinheit angezeigt. Würden wir uns aber umgekehrt zusammen mit dem Messzylinder bewegen dann würde für uns Beobachter die ebenfalls in Bewegung sind der Lichtstrahl ganz normal von unten nach oben und dann wieder von oben nach unten verlaufen sein, für uns wäre die Zeit also nicht langsamer verlaufen sondern genauso schnell wie ohne Bewegung. Um die Verwirrung zu komplettieren erinnern wir uns daran, das in Inertialsystemen, also bei gleichförmigen Bewegungen kein Unterschied zwischen Ruhe und gleichförmiger Bewegung festzustellen ist - und genau das trifft auch hier zu: Für denjenigen der sich zusammen mit der Uhr bewegt werden auch Uhren langsamer gehen die sich in Ruhe befinden weil er nicht entscheiden kann ob er sich bewegt oder sich die ruhende Uhr vorbeibewegt - Wieder mal eine Frage des Standpunkts. Den Effekt nennt man auch Zeitdilletation. 

Was passiert nun wenn wir die Uhr noch etwas schneller an uns vorbeifahren lassen? Da die Lichtgeschwindigkeit konstant ist und dem Versuchsaufbau "hinterherrennen" muss, wird bei steigender Geschwindigkeit die zurückgelegte Strecke bis zum vergehen einer Zeiteinheit immer länger, je flacher der Winkel wird den der ruhende Beobachter wahrnimmt:

r7 

Kommen wir nun zur ultimativen Konsequenz aus der Tatsache, dass Zeit immer langsamer vergeht je schneller wir uns bewegen - Was passiert wenn wir uns mit Lichtgeschwindigkeit bewegen? Wir, bzw jedes andere Objekt mit Masse kann die Lichtgeschwindigkeit zwar nicht erreichen aber Licht bewegt sich eben mit dieser Geschwindigkeit, wie schnell oder besser wie langsam vergeht die Zeit für Licht?

r8 

Wir haben gesehen, dass mit Annäherung an die Lichtgeschwindigkeit c der Winkel immer flacher wird, erreichen wir Lichtgeschwindigkeit ist er völlig flach - das hat zur Folge, dass der Lichtstrahl der sich ja auch nur maximal mit c bewegen kann nie mehr sein Ziel erreichen wird, die Konsequent: Die Zeit steht bei Lichtgeschwindigkeit still! 

Das muss man erstmal sacken lassen :) Damit ist mit einem relativ einfachen Gedankenexperiment die Relativität der Zeit nachgewiesen worden. Auch hier gibt es für uns keine Möglichkeit so etwas im Alltag festzustellen, aber: Es ist messbar und es ist gemessen worden! Mit zwei sehr genau gehenden und aufeinander synchronisierten Atomuhren, die eine verblieb am Boden während die zweite in einem Flugzeug zu einem längeren Flug aufbrach. Nach Stunden landete die Maschine und die Uhren wurden verglichen, sie gingen um einen winzigen Bruchteil einer Sekunde (eine Millardenstel Sekunde) unterschiedlich - exakt dem der von der SRT vorrausgesagt wurde. Im unserem alltäglichen (Zeit-) Empfinden mag uns diese Tatsache nicht weiter berühren (obwohl es im technischen Bereich durchaus eine Rolle spielt - siehe GPS) birgt diese Erkenntnis weitere erstaunliche Konsequenzen wenn man in relativistischen Geschwindigkeiten denkt, also solche die einen merklichen Bruchteil der Lichtgeschwindigkeit betragen...

Das Zwillingsparadoxon

Vorweg: Lichtschnelles Reisen ist physikalisch unmöglich, warum das so ist sehen wir wesentlich später wenn es ans Eingemachte geht, nur so viel sei verraten: Je mehr wir uns der Lichtgeschwindigkeit nähern desto höher wird der Energieaufwand um auch nur ein kleines bisschen schneller zu werden, Lichtgeschwindigkeit wäre also für ein Objekt mit Masse nur mit unendlichem Energieaufwand möglich (Photonen sind masselose Gesellen)... Aber es gibt natürlich eine Menge Visionäre (je nach Standpunkt werden sie auch Utopisten genannt) die sehr wohl in fernerer Zukunft die Möglichkeit sehen gewisse Bruchteile der Lichtgeschwindigkeit mit Antrieben zu erreichen die physikalisch durchaus plausibel sind und denen "nur" sehr lange Grundlagenforschung in Sachen Beherrschbarkeit und Materialforschung im Wege stehen (Es gibt sogar relativ weit ausgereifte Pläne der Forschungsabteilung des US-Verteidigungsministeriums, die bereits in den 60er Jahren die Möglichkeit sahen mit Nuklearbomben angetriebene Raumschiffe zu bauen die sich für interstellare Reisen eignen - neben dem unkalkulierbaren Risiko der Startphase vollgestopft mit dem Weltarsenal an Atomwaffen war das ganze wohl auch ein bissl teuer - Google: Orion Project und Projekt Daedalus).
Doch nun zu Paraxoxon, Einstein wurde schon 1911 auf dieses Problem hingewiesen. Ein Zwillingspaar auf der Erde: Eine der beiden steigt in ein Raumschiff dass einen erheblichen Teil der Lichtgeschwindigkeit erreichen kann (wir nehmen eine Geschwindigkeit von 0,87c also 87% Lichtgeschwindigkeit an weil der Effekt dann die Zeitdehnung den Faktor 2 annimmt), der andere bleibt auf der Erde. Beobachtete der Zurückgebliebene das Raumschiff des Bruders, dann sähe er wie die Zeit im Raumschiff langsamer vergeht, nämlich nur halb so schnell, während auf der Erde zwei Jahre vergingen wäre es an Bord des Raumschiffs nur ein Jahr. Nach der Rückkehr des Raumfahrers wäre dieser dann jünger als sein Bruder! 

r9 

Was ich oft in der Literatur sehe ist, dass dies als das Zwillingsparadoxon beschrieben wird, das stimmt aber nicht, es klingt verrückt und mutet sehr seltsam an, aber es entspricht wie wir oben mit den Uhren gesehen haben und wie es auch durch das Experiment mit den Atomuhren bestätigt wurde genau den Vorhersagen der Relativitätstheorie und ist an sich nicht paradox. Erinnern wir uns aber was wir über die Aussagen der Beobachter in einem Inertialsystem wissen, wie auch schon im Beispiel unserer Lichtuhr würde der Bruder im Raumschiff alles genau andersherum sehen, für ihn verginge die Zeit normal während alles ausserhalb des Raumschiffs langsamer zu vergehen scheint - Aber nicht sein Bruder, sonder der Reisende selber wird bei der Rückkehr zur Erde der Jüngere sein! Das ist nun wirklich paradox... Ist es das wirklich? Nein, Einstein hat sich auch hier nicht vergallopiert (das Experiment mit den Atomuhren hat den Effekt bekanntlich bewiesen). Für Beobachter ist gleichförmige Bewegung und Ruhe nicht unterscheidbar - aber sowohl beim Flugzeugexperiment als auch im Beispiel unseres Raumschiffs handelt es sich nicht mehr um gleichförmige Bewegungen, weder Raumschiff noch Flugzeug erreichten ihre Geschwindigkeiten instantan sondern mussten erst durch Kraftübertragung in einer Beschleunigungsphase auf die Reisegeschwindigkeit gebracht und bei der Rückkehr wieder gebremst werden, dadurch geht die Gleichförmigkeit der Bewegung verloren. Man kann sich das auch veranschaulichen wie die Wahrnehmung innerhalb des Raumschiffs auf dem Hin- und auf dem Rückflug betrachtet. Während das Licht und damit die Information über den Alterungsprozess des auf der Erde verbliebenen Bruders dem Raumschiff nacheilt und ihn verzögert erreicht, ist es bei der Rückreise umgekehrt, nun altert der verbliebene Bruder "nach". Man kann sich das auch daran klar machen wenn man annimmt, dass ein Raumschiff das auf eine hohe Geschwindigkeit beschleunigt, in regelmässigen Zeitabständen Funksprüche von der Erde nachgesendet bekommt. Diese werden auf der Erde sagen wir mal alle 2h abgesendet, sie erreichen das Raumschiff aber verzögert, damit ist natürlich nicht die Laufzeit gemeint die das Licht bzw. das Radiosignal ohnehin braucht sondern da dem Beobachter im Raumschiff Alle Abläufe ausserhalb seines Raumschiffs mit zunehmender Geschwindigkeit immer langsamer vorkommen werden auch die Abstände zwischen den Nachrichten (auf der Erde alle 2h abgesehndet) immer länger. Auf der Rückreise kehrt sich dieser Effekt um. 

Längenkontraktion

Ein weitere Effekt der bei hohen Geschwindigkeiten auftritt ist die Längenkontraktion, was ist das? Ganz einfach gesagt, erscheinen bewegte Objekte in Bewegungsrichtung geschrumpft! Das klingt wieder sehr sonderbar, ein Beobachter würde als ein sich an ihm vorbeibewegendes Raumschiff je nach Geschwindigkeit anders wahrnehmen:
r10 

Schwer nachzuvollziehen? Ja, definitiv und doch gibt es ein reales Beispiel, dass diesen Effekt anschaulich macht:

Wenn die allgegenwärtige kosmische Strahlung auf die Erdatmosphäre trifft ensteht ein Elemtarteilchen, das Myon, das kann auch in Beschleunigern auf der Erde künstlich hergestellt werden, daher weiss man sehr genau, dass ein Myon die unglaublich kurze Lebensdauer von nur 2 μs (das sind nur 0,0000002 Sekunden) hat bevor es wieder zerfällt. Nun ergibt sich ein Problem: Wenn ein Myon durch den Beschuss der Atmosphäre mit kosmischer Strahlung in etwa 20 Kilometer Höhe entsteht hat kann es bedingt durch seine kurze Lebensdauer und der Geschwindigkeit von 99,98% der Licht- geschwindigkeit nur etwa 600m in der Erdatmosphäre zurücklegen bevor es zerfällt. Nun kann man aber Myonen auch am Erdboden detektieren! Das erscheint erstmal unmöglich denn um die 20000m zurückzulegen bleiben dem Myon eigentlich nicht genug Zeit da es nur 600m "überlebt". Wie wir schon richtig vermuten hat dieses Phänomen etwas mit der enormen Geschwindigkeit des Teilchens zu tun und der Einfluss auf die Zeit. 

r11 

Tatsächlich vergeht die Zeit des fast lichtschnellen Myons für uns irdische Beobachter so langsam, dass das Myon problemlos seine Lebendauer ausdehnt bis es am Erdboden ankommen kann. Wie hängt das nun mit der Längenkontraktion zusammen? Dazu betrachten wir den Lebensweg des Myons aus dessen Perspektive. Für das Myon vergehen die 2 μs normal, doch wie kann es dann die 20km zurücklegen die es vor sich sieht? Dadurch dass sich die Wegstrecke tatsächlich aus seinem Blickwinkel staucht nur noch 400m lang erscheint! Das liegt ohne weiteres in dem Radius in dem es sich in seiner begrenzten Lebensdauer bewegen kann.

r12
r13 
 
Was ist Raumzeit?
 
Bei allem was wir bis hierher gelernt haben zeigt uns, dass die Zeit nicht konstant ist und überall gleich verläuft. Auch wissen wir nun, dass die Lichtgeschwindigkeit die absolute Geschwindigkeitsgrenze im Universum ist und alles Zeit braucht um den Raum zu durchqueren, auch das Licht ferner Sterne und Galaxien, der berühmte Blick in die Vergangenheit. Deshalb steht die Zeitdimension völlig gleichberechtigt neben den drei Raumdimensionen und somit ist die Welt um uns herum nicht nur ein Konstrukt aus den Raumdimensionen sondern die Zeitdimension ist ebenso Teil der Welt und abhängig von Vorgängen im Raum, deshalb leben wir in einem Gesamtkonstrukt das man als Raumzeit bezeichnet. 

Wie verhält sich Masse bei hohen Geschwindigkeiten? 

Wir stellen uns die Kollision zweier Himmelskörper vor, ein Meteorit schlägt auf einem Planeten ein und hinterlässt einen Krater mit einem bestimmten Durchmesser. Der Körper hat eine gewisse Geschwindigkeit (v) und eine Masse (m): Wir gehen mal in diesem Beispiel von einem ganz simplen Zusammhang zwischen Masse, Geschwindigkeit und Kraterdurchmesser aus.
r14 

Was passiert nun wenn der Körper doppelt soviel Masse hat aber mit gleicher Geschwindigkeit auftrifft? Der Krater wird in unserem Beispiel doppelt so gross.

r15 

Im nächsten Schritt haben wir wieder einen Körper von Masse = 1 dafür ist die Geschwindigkeit doppelt so gross, der Einschlagskrater wird in unserem vereinfachten Modell genauso gross sein wie bei v= 1 aber m = 2.

r16 

Bis hierhin ist alles vollkommen logisch und entspricht den uns bekannten Tatsachen, nun wechseln wir aber einmal mehr unsere Perspektive und bewegen uns mit einer hohen Geschwindigkeit (ein merklicher Bruchteil von c) an diesem Ereignis vorbei. Was werden wir sehen? Der Beobachter im Orbit des Planeten sieht einen Meteoriten mit der Masse m=1 und der Geschwindigkeit v=2 auf dem Planeten aufschlagen der einen Krater mit einem Durchmesser d=2 reisst. Bewegen wir uns aber in einem Raumschiff schnell vorbei werden wir einen anderen Eindruck bekommen! Gemäss der Relativitätstheorie werden wir wie in den vorangegangenen Beispielen die Ereignisse ausserhalb des Raumschiffs langsamer ablaufen sehen, die Geschwindigkeit mit der der Meteorit einschlägt wird also aus der Perspektive des Raumschiffs nicht v=2 sondern vieleicht nur v=1 betragen. Dummerweise sehen wir aber auch, dass der Krater einen Durchmesser von d=2 hat, das ist aber mit einer Geschwindigkeit von lediglich v=1 nicht möglich, also müssen wir zwangsweise daraus folgern, dass die Masse des einschlagenden Objekts höhere ist, nämlich m=2... Hui wieder so abstrus, aber eine weitere Konsequenz der Relativitätstheorie, je schneller man fliegt, desto schwerer wird man :) 

Das impliziert wiederum einen wichtigen Punkt, der ganz am Anfang schon angeklungen ist: Warum können wir nie mit Lichtgeschwindigkeit reisen? Weil wir (das Raumschiff, die Besatzung, der Treibstoff) Masse haben! Und je schneller wir uns bewegen desto stärker nimmt die Masse zu, um diese jedoch weiter zu beschleunigen brauchen wir immer mehr Energie, der Energieträger (Treibstoff) wiegt in jedem Fall auch noch eine Menge und verlangt wiederum nach mehr Energie zur Beschleunigung. Ähnlich wie bei der Zeit, die bei exakt Lichtgeschwindigkeit still steht gibt es auch in Sachen Masse ein Extrem, denn diese würde dann unendlich gross und somit wäre eine unendlich grosse Energie nötig um darauf zu beschleunigen, das ist nicht möglich soviel Energie steht im Universum logischerweise nicht zur Verfügung, aber dafür müssen wir nicht einmal c anpeilen, schon bei weniger Geschwindigkeit kommen wir schnell an den Punkt wo eine weitere Beschleunigung um nur wenige Tausendstel Prozent mehr Energie verschlingen würde als im gesamten Universum zur Verfügung steht - wohlgemerkt: für ein kleines Raumschiffchen... Mehr als einige Prozent c wird selbst mit futuristischsten Antrieben in ferner Zukunft wohl nicht möglich sein.

Die Formel die die Welt bewegt: E=mc²

Jeder kennst sie und die schlauen Füchse können vieleicht auch noch die Bezeichnungen der einzelnen Variablen herunterbeten, aber was bedeuted sie wirklich?
Energie = Masse * Lichtschwindigkeit im Quadrat - sind wir schlauer? Nein noch nicht wirklich, was diese Formel Einsteins besagt (die im Übrigen keinesfalls die RT schlechthin repräsentiert oder der wichtigste Teil der Theorie wäre) ist, dass sich Masse in Energie und Energie wiederum in Masse einfach umwandeln lässt! Dazu ein Beispiel dass diese Aussage beweist und veranschaulicht.
Wir haben einen kalten Metallwürfel vor uns liegen, er wiege 1kg. Nun erhitzen wir den Metallwürfel, er bekommt also Wärmeenergie zugeführt die er speichert (und dann wieder an die Umgebung abgibt), tatsächlich ist es messbar, dass die Masse durch die reine Zuführung von Wärmeenergie zugenommen hat! Der Massezuwachs spielt sich in einem solchen Beispiel natürlich in sehr kleinen Skalen ab, nur wenige Millardenstel Zuwachs sind messbar...

r17 

Wesentlich beträchtlicher wird dieser Effekt bei anderen Ereignissen, unsere Sonne fusioniert in jeder Sekunde abwerwitzige Mengen an Wasserstoff zu Helium, doch es gibt eine Massedifferenz, und eben diese wird beim Fusionsprozess in reine Energie umgewandelt und nach einer langen Reise durch das dichte Sonneninnere wird die Energie abgestrahlt und kommt unter anderem bei uns auf der Erde an. Auch Nuklearwaffen lassen sich so beschreiben (eine Tatsache die kurioser Weise die Relativitätstheorie immer wieder mit der Atombombe in Verbindung bringt, obwohl mal eben 40 Jahr zwischen SRT und der ersten Atombombe liegen und Einstein eine vehementer Pazifist war und natürlich nie etwas mit dem Bau und der Entwicklung dieser Waffe zu tun hatte). 

Masse lässt sich also in Strahlung/Energie umwandeln und umgekehrt, umgekehrt? Ja aus Strahlung kann Materie entstehen, genauso entstand die Materie die heute im Universum beobachtet werden kann während der frühen Phase des Universum nach dem Urknall und auch in irdischen Labors, genauer gesagt in Teilchenbeschleunigern können Materieteilchen scheinbar aus dem Nichts entstehen wenn mit hohen Energien gearbeitet wird, oder wir erinnern uns an unser Myon das beim Aufprall von kosmischer Strahlung auf die Erdatmosphäre entsteht. Wäre diese Masseumwandlung zur Energiegewinnung einsetzbar (ich sags mal schon hier: ist sie aber nicht) dann müssten wir uns keine Sorgen um unsere nächste Stromabrechnung machen... Betrachten wir mal die Energieausbeute von drei Materialien: Kohle, Uran und Mozartkugeln, jeweils genau 1kg. Die Kohle wird in einem Kraftwerk verbrannt, das Uran in einem Atommeiler gespalten und die Mozartkugeln... nein nicht gegessen sondern gemäss E=mc² in Energie umgewandelt: 

r18 

Wir sehen einen ganz erheblichen Unterschied (ich weiss schon warum ich die Dinger so gerne esse ;). Leider ist uns die direkte Umwandlung von Masse in Energie verwehrt, die vollständige Umwandlung ist möglich durch die sogenannte Antimaterie, das ist Materie deren Bausteine mit umgekehrter Ladung ausgestattet sind (also positiv statt negativ geladenen Elektronen sind Anti-Elektronen ("Positronen")). Diese vernichtet sich und sein Gegenstück bei Berührung und verwandeln sich so komplett in Energie, aber wie es aussieht gibt es keine Antimaterie in der Natur, verständlich wenn man seine vernichtende Wirkung sieht. Zwar lässt sich Antimaterie künstlich in Beschleunigern erzeugen, doch nur unter extremen Energieaufwand und dadurch immensen Kosten die eine Nutzung mehr als unwirtschaftlich machen, zudem vernichten sie sich sofort wieder, die Speicherung von Antimaterie ist noch ungelöst auch wenn es Ansätze gibt. Fazit: Zur Zeit ist uns die Energiegewinnung durch direkte Materieumwandlung nicht möglich.

Respekt für denjenigen der es wirklich bis hier hin durchgehalten hat, vieles was uns "unnatürlich" und wider den "gesunden Menschenverstand" erscheint hat sich als fundamentaler Bestandteil der Natur erwiesen. Bis zum jetzigen Moment fällt alles was wir erörtert haben unter die 1905 von Albert Einstein veröffentlichte spezielle Relativitätstheorie (SRT), doch seine umfassendere, die Gravitation einbeziehende Allgmeine Relativitätstheorie haben wir noch nicht gestreift, um dem ganzen aber gebührenden Abstand zu lassen wird diese in einem gesonderten Artikel behandelt (in Vorbereitung), dann kommt auch endlich wieder mehr astronomischer Bezug in die Sache.
Ich hoffe der Artikel war für meine Leser relativ verständlich ;) 

Der Text sowie die von mir angefertigten Grafiken unterliegen dem Copyright und dürfen nicht ohne Genehmigung verwendet werden

Keine Kommentare:

Kommentar veröffentlichen